This book was written to serve as a thorough teaching text, a comprehensive source of information, and a basic reference. It is intended for advanced students, professional engineers, and researchers. It emphasizes the fundamental concepts of analysis and design of prestressed concrete structures, providing the user with the essential knowledge and tools to deal with everyday design problems, while encouraging the necessary critical thinking to tackle more complex problems with confidence.

Prestressed concrete is one of the most reliable, durable, and widely used construction materials in building and bridge projects around the world. It has made significant contributions to the construction industry, the precast manufacturing industry, and the cement industry as a whole. It has led to an enormous array of structural applications, including buildings, bridges, nuclear power vessels, TV towers, and offshore drilling platforms.

Main Features:

This updated edition
- Integrates the provisions of the 2011 ACI Building Code in text and examples
- Offers an extensive treatment of bridge analysis and design according to the 2010 AASHTO LRFD Specifications
- Offers a rigorous treatment of fundamentals as applied to serviceability and ultimate strength limit states for bending, shear, composite action, compression and tension members, and introduces some simple optimum design approaches
- Includes a large number of logical design flow charts and design examples
- Covers the basics and provides examples of applications comparing both the 2011 ACI and 2010 AASHTO LRFD code approaches to bending, shear and torsion, prestress losses, and interface shear
- Presents a chapter on strut-and-tie modeling according to the ACI Building Code with examples of anchorage zone design
- Covers slenderness effects in prestressed concrete columns, and provides load-moment interaction diagrams for prestressed columns and poles
• Offers a comprehensive treatment of the design of one- and two-way prestressed slabs
• Presents a unique treatment of prestressed tensile members by optimum design, including the design of wall for circular tanks
• Covers the time-step procedure to compute prestress losses and long-term deflections
• Offers a rigorous treatment of prestressed continuous beams
• Presents a comprehensive treatment of prestressed composite beams
• Contains more than four hundreds illustrations and photographs
• Covers sufficient material for a two-semester course on the subject
• Contains a large number of examples, an extensive updated bibliography, and an appendix with answers to study problems
• Uses consistent notation and consistent sign convention
• Uses dual units (US and SI) throughout for key equations and reference data

Chapter 1 Principle and Methods of Prestressing
Chapter 2 Prestressing Materials: Steel and Concrete
Chapter 3 The Philosophy of Design
Chapter 4 Flexure: Working Stress Analysis and Design
Chapter 5 Flexure: Ultimate Strength Analysis and Design
Chapter 6 Design for Shear and Torsion
Chapter 7 Deflection Computation and Control
Chapter 8 Computation of Prestress Losses
Chapter 9 Analysis and Design of Composite Beams
Chapter 10 Continuous Beams and Indeterminate Structures
Chapter 11 Prestressed Concrete Slabs
Chapter 12 Analysis and Design of Tensile Members
Chapter 13 Analysis and Design of Compression Members
Chapter 14 Prestressed Concrete Bridges
Chapter 15 Strut-and-Tie Modeling
Appendix A List of Symbols
Appendix B Unit Conversions
Appendix C Typical Post-Tensioning Systems
Appendix D Answers to Selected Problems
Appendix E Typical Precast / Prestressed Beams
Index
1.4.2 Posttensioning 17
1.4.3 Self-Stressing 22
1.5 Prestressing Systems 24
1.6 Particular Prestressing Techniques 25
1.6.1 External Prestressing 25
1.6.2 Circular Prestressing 27
1.6.3 Stage Prestressing 28
1.6.4 Partial Prestressing 28
1.7 Prestressed Versus Reinforced Concrete 29
1.8 Example 32
1.9 Looking Ahead 37
1.10 Suggested Additional Reading 38
References 38
Problems 42

Chapter 2 Prestressing Materials: Steel and Concrete 45
2.1 Reinforcing Steels 45
2.2 Prestressing Steels 49
 2.2.1 Types of Prestressing Tendons 50
 2.2.2 Production Process 53
 2.2.3 Mechanical and Stress-Strain Properties 55
 2.2.4 Relaxation 58
 2.2.5 Effects of Temperature 62
 2.2.6 Fatigue 64
 2.2.7 Corrosion 68
2.3 Concrete 70
 2.3.1 Composition 70
 2.3.2 Stress-Strain Curve 71
 2.3.3 Mechanical Properties 74
 2.3.4 Shrinkage 78
 2.3.5 Creep 81
 2.3.6 Fatigue 85
 2.3.7 Effects of Temperature 85
 2.3.8 Steam Curing 86
2.4 Constitutive Modeling 87
 2.4.1 Stress-Strain Curve of Concrete in Compression 87
 2.4.2 Stress-Strain Curve of Reinforcing Steel in Tension 90
 2.4.3 Stress-Strain Curve of Prestressing Steels in Tension 93
2.5 Concluding Remarks 96
References 96
Problems 99

Chapter 3 The Philosophy of Design 103
3.1 What is Design? 103
3.2 Analysis or Investigation Versus Design 104
3.3 Design Objectives 104
3.4 Limit State Design Philosophy 105
3.5 Common Design Approaches 107
 3.5.1 WSD (or ASD) 109
 3.5.2 USD, SD, or LRFD 110
 3.5.3 Plastic Design, Limit Design, and Performance Based Plastic Design 113
 3.5.4 Nonlinear Design, Probabilistic Design 113
3.6 Design Codes 113
3.7 Loads 114
3.8 Allowable Stresses 117
3.8.1 Concrete 117
3.8.2 Prestressing Steel 121
3.8.3 Reinforcing Steel 122

3.9 Load and Strength Reduction (or Resistance) Factors 123
3.9.1 Load Factors 123
3.9.2 Strength Reduction or Resistance Factors 125

3.10 ACI Code Viewpoint Related to Prestressed and Partially Prestressed Concrete 126
3.10.1 Class Definition and Related Serviceability Design Requirements 126
3.10.2 Tension Controlled and Compression Controlled Sections 128

3.11 Some Design Comparisons: Reinforced Versus Prestressed Concrete 130
3.11.1 Practical Design Approach 130
3.11.2 C-Force and C-Line 131
3.11.3 Characteristic Response of RC, PC, and PPC in Bending in the Elastic Range of Behavior 132
3.11.4 Curvature Computation 134
3.11.5 Load Balancing Feature of Prestressing 136

3.12 Detailing of Reinforcement 137
3.13 Prestress Losses in Preliminary Design 140
3.14 Concluding Remarks 142
References 142

Chapter 4 Flexure: Working Stress Analysis and Design 145
4.1 Analysis Versus Design 145
4.2 Concepts of Prestressing 150
4.3 Notations for Flexure 152
4.3.1 Example: Computation of Sectional Properties 155
4.4 Sign Convention 155
4.4.1 Examples 158
4.5 Loading Stages 160
4.6 Allowable Stresses 161
4.7 Mathematical Basis for Flexural Analysis 163
4.8 Geometric Interpretation of the Stress Inequality Conditions 167
4.9 Example: Analysis and Design of a Prestressed Beam 170
4.9.1 Simply Supported T Beam 170
4.9.2 Simply Supported T Beam with Single Cantilever on One Side 174
4.10 Use of Stress Inequality Conditions for Design of Section Properties 178
4.11 Examples of Use of Minimum Section Properties 184
4.11.1 Minimum Weight Slab 184
4.11.2 Minimum Weight Beam 186
4.11.3 Selection of Optimum Beam from a Given Set of Beams 187
4.12 Limiting the Eccentricity along the Span 189
4.12.1 Limit Kern Versus Central Kern 189
4.12.2 Steel Envelopes and Limit Zone 193
4.12.2.1 General Procedure 196
4.12.3 Example 196
4.12.4 Limit Location of Draping Section 199
4.13 Some Preliminary Design Tips 200
4.14 Cracking Moment 202
4.15 Limiting the Amount of Prestressed Reinforcement 203
4.16 End Zone: Pretensioned Members 204
 4.16.1 Transfer Length and Development Length 204
 4.16.2 End Zone Reinforcement 206
4.17 End Zone: Posttensioned Members 207
 4.17.1 Analysis of Stresses 207
 4.17.2 Anchorage Zone Design 209
 4.17.3 Simplified ACI Procedure for Rectangular Sections 213
 4.17.3.1 Example 214
 4.17.4 Example: Design of End Zone Reinforcement by Elastic Analysis 215
4.18 Extension of Feasibility Domain to Other Limit States 217
 4.18.1 Constraint for Ultimate Strength Design in Bending 217
 4.18.1.1 Example: Nominal Bending Resistance Constraint 219
 4.18.2 Constraint to Limit Camber or Deflection 220
 4.18.2.1 Example: Deflection Constraint 221
References 222
Problems 223

Chapter 5 Flexure: Ultimate Strength Analysis and Design 229
5.1 Load-Deflection Response 229
 5.1.1 RC Versus PC at Ultimate 232
5.2 Terminology 233
5.3 Flexural Types of Failures 234
5.4 Special Notation 235
5.5 General Criteria for Ultimate Strength Design of Bending Members 238
 5.5.1 Design Criteria 238
 5.5.2 Minimum Reinforcement or Minimum Moment Resistance: Code Recommendations 239
 5.5.3 ACI Code Provisions for Tension-Controlled, Transition, and Compression-Controlled Sections at Increasing Levels of Reinforcement 241
 5.5.4 Net Tensile Strain and \(\varepsilon/\delta_t\) Ratio 246
 5.5.5 Amendments Adopted in this Text 248
 5.5.6 Recommendation on Maximum Reinforcement 249
5.6 Background for Analysis of Sections at Ultimate 250
 5.6.1 Objective – Assumptions 250
 5.6.2 Satisfying Equilibrium 253
5.7 Nominal Bending Resistance: Mathematical Formulation for Rectangular Section or Rectangular Section Behavior – Tension-Controlled 253
 5.7.1 Force Equilibrium 253
 5.7.2 Moment Equilibrium 255
 5.7.3 Solution Procedure 255
 5.7.4 Simplified Approximate Analysis 256
5.8 Stress in Prestressing Steel at Nominal Bending Resistance – ACI Code 257
 5.8.1 Members with Bonded Prestressing Tendons 257
 5.8.2 Members with Unbonded Prestressing Tendons 258
5.9 Example: Nominal Bending Resistance of a Rectangular Section 259
 5.9.1 Partially Prestressed Section – Simplified Approximation 259
5.9.2 Partially Prestressed Section – Using ACI Code
 Equation for f_{ps}
5.9.3 Fully Prestressed Section
5.9.4 Unbonded Tendons
5.10 Nominal Bending Resistance: Mathematical Formulation for
 T-Section Behavior of Flanged Section
5.10.1 Condition for T-Section Behavior
5.10.2 Fully Prestressed Section
5.10.3 Partially Prestressed Section
5.10.4 Remark
5.11 Example: Nominal Bending Resistance of T-Section
 5.11.1 Partially Prestressed Section
5.11.2 Fully Prestressed Section
5.11.3 Unbonded Tendons
5.11.4 Odd Case
5.12 Stress in Prestressing Steel at Nominal Bending Resistance –
 AASHTO LRFD Code
5.12.1 Members with Bonded Prestressing Tendons
5.12.2 Members with Unbonded Prestressing Tendons
5.13 Nominal Bending Resistance: AASHTO LRFD Code
 5.13.1 Equilibrium Equations for Rectangular and Flanged
 Sections
5.13.2 Solution for Members with Bonded Tendons
5.13.3 Solution for Members with Unbonded Tendons
5.13.4 Solution for Members with Both Bonded and
 Unbonded Tendons
5.13.5 Example: PPC (Partially Prestressed Concrete)
 Rectangular Section by AASHTO
5.13.6 Example: PPC (Partially Prestressed Concrete)
 T-Section with Bonded Tendons (AASHTO)
5.14 Transition between Tension-Controlled and Compression-
 Controlled Section in Bending
5.14.1 ϕ Factor for Bending According to AASHTO
5.14.2 Strategy for Design
5.15 Concept of Reinforcing Index
 5.15.1 Definitions
5.15.2 Meaning of ω_e
5.15.3 Useful Relationships
5.15.4 Relationship between Reinforcement Ratio,
 Reinforcing Index, and c/d_e
5.16 Justification for the Definition of ω_e and d_e and their
 Relation to the Limitations on Levels of Reinforcement and
 Moment Redistribution
5.16.1 Reinforced Concrete
5.16.2 Prestressed Concrete
5.16.3 Partially Prestressed Concrete
5.17 Derivation of Minimum Reinforcement Ratio, Minimum
 Reinforcing Index, or Minimum c/d_e
5.17.1 Approximation: Minimum Reinforcement Ratio for
 Prestressed Concrete
5.17.2 Minimum Reinforcing Index for RC, PC, and PPC
 Rectangular Sections
5.17.3 Minimum c/d_e Ratio for RC, PC, and PPC

5.18 Satisfying Ultimate Strength Design Requirements
 5.18.1 Basis for Ultimate Strength Design (USD)
5.18.2 Possible Remedies to Satisfy Inadequate Nominal Bending Resistance

5.19 Example: Analysis or Investigation Checking for All Ultimate Strength Design Criteria

5.20 Reinforcement Design for Ultimate Strength

5.20.1 Example: Reinforcement Design for Nominal Resistance – Rectangular Section

5.20.2 Example: Reinforcement Design for Nominal Resistance – T Section

5.21 Composite Beams

5.22 Continuous Beams and Moment Redistribution

5.23 Author’s Recommendations for the Design of RC, PC, and PPC Beams at Ultimate

5.23.1 Using ε_{te} and d_e instead of ε_t and d_t

5.23.1.1 Example of Error in Using the Net Tensile Strain in Extreme Layer of Reinforcement

5.23.2 T-Section Behavior

5.23.3 Stress f_{ps} in Bonded Tendons at Ultimate

5.23.4 Stress f_{ps} in Unbonded Prestressing Tendons at Ultimate

5.24 Additional Design Examples Based on USD

5.24.1 Example 1: Analysis with Unbonded Tendons Illustrating Eq. (5.103)

5.24.2 Example 2: Given A_{ps}, Design for A_s Based on USD – Unbonded Tendons

5.24.3 Example 3: Given A_s, Design for A_{ps} Based on USD – Unbonded Tendons

5.24.4 Example 4: Given A_s, Design for A_{ps} Based on USD – Bonded Tendons

5.25 Concluding Remarks

References

Problems

Chapter 6 Design for Shear and Torsion

6.1 Introduction

6.2 Shear Design

6.3 Prestressed Versus Reinforced Concrete in Shear

6.4 Diagonal Tension in Uncracked Sections

6.5 Shear Stresses in Uncracked Sections

6.6 Shear Cracking Behavior

6.7 Shear Reinforcement after Cracking

6.8 ACI Code Design Criteria for Shear

6.8.1 Basic Approach

6.8.2 Shear Strength Provided by Concrete

6.8.2.1 Conservative Design Method to Estimate V_c or V_c

6.8.2.2 Elaborate Design Method to Estimate V_c or V_c

6.8.3 Required Area of Shear Reinforcement

6.8.4 Limitations and Special Cases

6.8.5 Critical Sections for Shear

6.9 Design Expedients

6.10 Example: Design of Shear Reinforcement (ACI Code)

6.10.1 Conservative Method to Determine V_c

6.10.2 Elaborate Method to Determine V_c
6.10.3 Design for Increased Live Load: Partially Prestressed Beam

6.11 Derivation of Concrete Nominal Shear Strength Equations (ACI Code)

6.12 AASHTO General Procedure for Shear Design

6.12.1 General Sectional Procedure for Shear Design

6.12.2 Special Considerations

6.12.3 Example: Shear Design by AASHTO LRFD Code (Using Modified Compression Field Theory)

6.12.4 Simplified Shear Design Procedure by AASHTO for Prestressed and Non-Prestressed Sections

6.12.5 Example: Using AASHTO Simplified Shear Design Procedure

6.13 Torsion and Torsion Design

6.14 Behavior under Pure Torsion

6.15 Background to Stress Analysis and Design for Torsion

6.15.1 Torsional Stresses

6.15.2 Torsional Cracking Strength

6.15.3 Torsional Resistance after Cracking

6.15.4 Combined Loading

6.15.5 Design Theories for Torsion and Code Related Approaches

6.16 Design for Torsion by ACI Code

6.16.1 Definition of Section Parameters

6.16.2 Basic Assumptions and Design Strategy

6.16.3 Threshold Limit for Consideration of Torsion in Design – \(T_{u min} \)

6.16.4 Critical Section for Torsion

6.16.5 Maximum Allowable Torsional Moment Strength – Upper Limit

6.16.6 Transverse Reinforcement Design

6.16.7 Longitudinal Torsion Reinforcement

6.16.8 Combining Shear and Torsion Reinforcement

6.16.9 Minimum Torsion Reinforcement

6.16.10 Spacing and Detailing

6.16.11 Type of Torsion Reinforcement

6.16.12 Design Steps for Combined Torsion and Shear

6.17 Example: Torsion Design of a Prestressed Beam

6.18 Shear and Torsion in Partially Prestressed Members

6.19 Importance of Transverse Reinforcement

References

Problems

Chapter 7 Deflection Computation and Control

7.1 Serviceability

7.2 Deflection: Types and Characteristics

7.2.1 Terminology / Notation

7.2.2 Key Variables Affecting Deflections in a Given Beam

7.3 Theoretical Deflection Derivations

7.3.1 Moment-Area Theorems

7.3.2 Example

7.4 Short-Term Deflections in Prestressed Members

7.4.1 Uncracked Members

7.4.2 Cracked Members

7.5 Background to Understanding Long-Term Deflection
7.6 Additional Long-Term Deflection: Simplified Prediction Methods 448
 7.6.1 Additional Long-Term Deflection Using ACI Code Multiplier 450
 7.6.2 Additional Long-Term Deflection Using Branson’s Multipliers 450
 7.6.3 Additional Long-Term Deflection Using Martin’s Multiplier 451
 7.6.4 Additional Long-Term Deflection: Heuristic or “Rule of Thumb” Method 452
 7.6.5 Discussion 452

7.7 Deflection Limitations 453

7.8 Strategy for Checking Deflection Criteria 455

7.9 Example: Deflection of Uncracked or Cracked Prestressed Beam 456
 7.9.1 Fully Prestressed Beam – Uncracked under Full Service Load 457
 7.9.2 Partially Prestressed Beam 459

7.10 Integrating the Modulus of Concrete into Time-Dependent Deflection Calculations 462
 7.10.1 Age-Adjusted Effective Modulus 462
 7.10.2 Equivalent Modulus 463
 7.10.3 Equivalent Cyclic-Dependent Modulus 464

7.11 Long-Term Deflection by Incremental Time Steps 464
 7.11.1 Theoretical Approach 464
 7.11.2 Simplified C-Line Approach 465

7.12 Example: Time-Dependent Deflection Using the C-Line Approach and Comparisons 472
 7.12.1 Standard Precast Prestressed Double-T Beam 472
 7.12.2 Comparison of Long-Term Deflections Predicted from Different Methods 477

7.13 Time-Dependent Deflection Using C-Line Approach for Example 7.9.1 479

7.14 Deflection Control 481

7.15 Effective Moment of Inertia - Revisited 482

7.16 Concluding Remarks 484
 References 485
 Problems 486

Chapter 8 Computation of Prestress Losses 491

8.1 Sources of Loss of Prestress 491
8.2 Total Losses in Pretensioned Members 494
8.3 Total Losses in Posttensioned Members 497
8.4 Methods for Estimating Prestress Losses 498
8.5 Lump Sum Estimate of Total Losses 500
 8.5.1 Background 500
 8.5.2 Lump Sum Estimate of Time-Dependent Prestress Losses: AASHTO LRFD 501
 8.5.2.1 Non Composite Members 501
 8.5.2.2 Composite Members 505
 8.5.2.3 Refined Estimate of Time Dependent Losses 506
 8.6 Separate Lump Sum Estimate of Each Time-Dependent Loss – AASHTO LRFD 506
 8.6.1 Total Loss Due to Shrinkage 507
 8.6.2 Total Loss Due to Creep 507
 8.6.3 Total Loss Due to Relaxation 508
8.6.4 Losses for Deflection Calculations 510
8.6.5 Example: Losses Due to Relaxation 510
8.7 Loss Due to Elastic Shortening 511
8.7.1 Pretensioned Construction: Approximate Method and AASHTO LRFD 512
8.7.2 Pretensioned Construction: Accurate Method 513
8.7.3 Posttensioned Construction: AASHTO LRFD 513
8.7.4 Posttensioned Construction: Accurate Method 514
8.8 Example: Elastic Shortening Loss in Pretensioned Beam 516
8.9 Example: Computation of Prestress Losses for a Pretensioned Beam by Lump Sum Estimates of Total and Separate Losses 518
8.9.1 Lump Sum Estimate of Total Losses by AASHTO LRFD 518
8.9.2 Lump Sum Estimates of Separate Losses by AASHTO LRFD 518
8.10 Example: Typical Stress History in Strands 519
8.11 Time-Dependent Loss Due to Steel Relaxation 520
8.12 Time-Dependent Loss Due to Shrinkage 523
8.12.1 Shrinkage Strain Recommended in AASHTO LRFD 525
8.12.2 Example: Shrinkage Loss Assuming No Other Loss Occurs 527
8.13 Time-Dependent Loss Due to Creep 529
8.13.1 Creep Coefficient Recommended in AASHTO LRFD 531
8.13.2 Example: Creep Loss Assuming No Other Loss Occurs 532
8.14 Prestress Losses by Time-Step Method 534
8.15 Example: Computation of Prestress Losses for a Pretensioned Beam by Time-Step Method 536
8.16 Loss Due to Friction 541
8.16.1 Analytical Formulation 541
8.16.2 Graphical Representation 544
8.16.3 Example: Computation of Losses Due to Friction 545
8.17 Loss Due to Anchorage Set 548
8.17.1 Concept of Area Lost or Equivalent Energy Lost 552
8.17.2 Example: Loss Due to Anchorage Set 552
8.18 Loss Due to Anchorage Set in Short Beams 555
8.18.1 Example: Anchorage Set Loss in a Short Beam 556
8.19 Concluding Remarks 557
References 558
Problems 561

Chapter 9 Analysis and Design of Composite Beams 565
9.1 Types of Prestressed Concrete Composite Beams 565
9.2 Advantages of Composite Construction 566
9.3 Particular Design Aspects of Prestressed Composite Beams 568
9.4 Loading Stages, Shored Versus Unshored Beams 569
9.5 Effective and Transformed Flange Width and Section Properties 570
9.5.1 Effective Flange Width 570
9.5.2 Transformed Flange Width 572
9.5.3 Cross Section Properties of Composite Section 574
9.6 Interface Shear or Horizontal Shear 575
9.6.1 Evaluation of Horizontal Shear 575
9.6.2 ACI Code Provisions for Horizontal Shear at Contact Surface 578
9.6.2.1 Shear Transfer Resistance 578
9.6.2.2 Shear Friction Reinforcement: Sectional Design 580
9.6.2.3 Shear Friction Reinforcement: Segment Design 582

9.7 Flexure: Working Stress Analysis and Design 585
9.7.1 Extreme Loadings 585
9.7.2 Stress Inequality Conditions 586
9.7.3 Feasible Domain, Limit Kern, Steel Envelopes 590
9.7.4 Cracking Moment 591
9.7.5 Minimum Section Moduli of Composite Sections 591
9.7.6 Example: Selection of Optimum Beam from a Given Set of Beams 594

9.8 Flexure: Ultimate Strength Analysis and Design 597
9.9 Designing for Shear and Torsion 599
9.10 Deflections 600
9.10.1 Sequence of Computations 601

9.11 Example: Prestressed Composite Floor Beam 602

9.12 AASHTO LRFD Provisions on Interface Shear Reinforcement at Contact Surface of Composite Beams 616
9.12.1 General Design Approach 617
9.12.2 Factored Interface Shear Force per Unit Length of Interface, \(V_{ub} \) 618
9.12.3 Nominal Interface Shear Resistance per Unit Length, \(V_{nh} \) 619
9.12.4 Minimum Interface Shear Reinforcement 621
9.12.5 Practical Recommendation 622
9.12.6 Example 623

References 625
Problems 626

Chapter 10 Continuous Beams and Indeterminate Structures 629
10.1 Advantages and Forms 629
10.2 Necessary Analytical Background 632
10.3 Sign Convention and Special Notation 633
10.4 Secondary Moments and Zero-Load-C (ZLC) Line 634
10.5 Example: Secondary Moments and Concordancy Property 637
10.6 Linear Transformation 640
10.7 Concordant Tendons 641
10.8 External Loads Equivalent to Prestressing 643
10.8.1 Concept of Equivalent Load 644
10.8.2 Application of Equivalent Load to a Continuous Tendon 646
10.8.3 Example: Equivalent Load 647
10.8.4 Example: Equivalent Load for Circular and Parabolic Tendon Profile 650
10.9 Prestressing Moment and Elastic Stresses 654
10.9.1 Moment Due to Prestressing, \(M_F \) 654
10.9.2 Example: Prestressed Moments by the Equivalent Load Method 656
10.9.3 Elastic Stresses in a Continuous Beam 661
10.10 Design Aids 662
10.11 Working Stress Analysis and Design 666
10.11.1 Assumptions 666
10.11.2 Analysis or Investigation 666
10.11.3 Design 667
<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Analysis and Design of Compression Members</th>
<th>853</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Types of Compression Members and Their Advantages</td>
<td>853</td>
</tr>
<tr>
<td>13.2</td>
<td>Behavior of Columns</td>
<td>857</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Load-Deformation Response</td>
<td>857</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Classification</td>
<td>858</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Load-Moment Interaction Diagram</td>
<td>858</td>
</tr>
<tr>
<td>13.2.4</td>
<td>ACI Code Design Interaction Diagram</td>
<td>861</td>
</tr>
<tr>
<td>13.3</td>
<td>Analysis of Short Columns</td>
<td>863</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Assumptions</td>
<td>863</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Basic Equations for Fully Prestressed Square and Rectangular Sections</td>
<td>865</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Partially Prestressed Square or Rectangular Sections</td>
<td>867</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Circular Hollow-Core and I-Shaped Sections</td>
<td>869</td>
</tr>
<tr>
<td>13.4</td>
<td>Example: Column Load-Moment Interaction Diagram</td>
<td>872</td>
</tr>
<tr>
<td>13.5</td>
<td>ACI Code Provisions and Other Design Considerations</td>
<td>881</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Minimum Longitudinal Reinforcement</td>
<td>881</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Lateral or Transverse Reinforcement</td>
<td>881</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Minimum Size of Columns</td>
<td>884</td>
</tr>
<tr>
<td>13.5.4</td>
<td>Minimum Eccentricity</td>
<td>884</td>
</tr>
<tr>
<td>13.5.5</td>
<td>Transfer Zone</td>
<td>884</td>
</tr>
<tr>
<td>13.6</td>
<td>Slender Columns: Theoretical Background</td>
<td>885</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Critical Buckling Load</td>
<td>885</td>
</tr>
<tr>
<td>13.6.2</td>
<td>Effective Slenderness Ratio</td>
<td>886</td>
</tr>
<tr>
<td>13.6.3</td>
<td>Definition of Braced, Unbraced, Sway and Non-Sway Columns or Frames</td>
<td>887</td>
</tr>
<tr>
<td>13.6.4</td>
<td>Single and Double Curvature</td>
<td>888</td>
</tr>
<tr>
<td>13.6.5</td>
<td>Terminology and Definitions</td>
<td>888</td>
</tr>
<tr>
<td>13.6.6</td>
<td>Flexural Rigidity Under Cracked Conditions for First-Order Frame Analysis</td>
<td>890</td>
</tr>
<tr>
<td>13.7</td>
<td>Slenderness Effects: ACI Code Philosophy</td>
<td>891</td>
</tr>
<tr>
<td>13.8</td>
<td>ACI Code Design Provisions for Slender Columns by the Moment Magnifier Method</td>
<td>894</td>
</tr>
<tr>
<td>13.8.1</td>
<td>Sway and Non-Sway Conditions</td>
<td>894</td>
</tr>
<tr>
<td>13.8.2</td>
<td>Effective Length Factor k</td>
<td>895</td>
</tr>
<tr>
<td>13.8.3</td>
<td>Effective Slenderness Ratio and Slenderness Condition</td>
<td>897</td>
</tr>
<tr>
<td>13.8.4</td>
<td>ACI Moment Magnifier Procedure for Non-Sway Frames</td>
<td>899</td>
</tr>
<tr>
<td>13.8.5</td>
<td>ACI Moment Magnifier Procedure for Sway Frames with $22 < kl_a / r < 100$</td>
<td>901</td>
</tr>
<tr>
<td>13.8.6</td>
<td>Additional Design Checks</td>
<td>905</td>
</tr>
<tr>
<td>13.8.7</td>
<td>Design According to the PCI Committee on Columns</td>
<td>905</td>
</tr>
<tr>
<td>13.9</td>
<td>Example: Slender Column Using the PCI Approach</td>
<td>906</td>
</tr>
<tr>
<td>13.9.1</td>
<td>Non-Sway or Braced Column</td>
<td>906</td>
</tr>
<tr>
<td>13.9.2</td>
<td>Sway or Unbraced Column</td>
<td>911</td>
</tr>
<tr>
<td>13.10</td>
<td>Design Expedients and Design Aids</td>
<td>914</td>
</tr>
<tr>
<td>13.10.1</td>
<td>Preliminary Dimensioning</td>
<td>914</td>
</tr>
<tr>
<td>13.10.2</td>
<td>Design Charts: Load-Moment Interaction Diagrams</td>
<td>915</td>
</tr>
<tr>
<td>13.11</td>
<td>Biaxial Bending</td>
<td>924</td>
</tr>
<tr>
<td>13.12</td>
<td>New Design Methodology for Slender Prestressed Columns</td>
<td>927</td>
</tr>
<tr>
<td>13.12.1</td>
<td>Example: Computation of EI for a Slender PC Column Using Shuraim and Naaman’s Procedure</td>
<td>930</td>
</tr>
</tbody>
</table>
Chapter 14 Prestressed Concrete Bridges 939

14.1 Scope 939
14.1.1 Special Design Characteristics of Bridge Members 941
14.2 Types of Bridges 941
14.2.1 Short-Span Bridges 943
14.2.2 Medium- and Long-Span Bridges Using Precast Beams 943
14.2.3 Long- and Very Long-Span Bridges 951
14.3 Rational Evolution of Bridge Form with Span Length 956
14.3.1 Evolution of Deck Section 956
14.3.2 Evolution of Support Structure and Form 957
14.4 Special Construction Techniques for Bridges 960
14.4.1 Segmental Construction and Cable Stayed Bridge Construction 960
14.4.2 Truss Bridges 964
14.4.3 Stress Ribbon or Inverted Suspension Bridges 965
14.4.4 Use of New Materials 969
14.5 Design Specifications and General Design Philosophy 972
14.5.1 Limit States 972
14.5.2 Load Combinations, Load Factors and Resistance Factors 974
14.5.3 Allowable Stresses for Service Limit States 978
14.6 Bridge Live Loads 980
14.6.1 Traffic Lane and Design (or Loading) Lane 980
14.6.2 Basic Types of Live Loads 981
14.6.3 Live Load Combinations for Design 982
14.6.4 Conditions of Application of Live Loads 983
14.6.5 Impact Factor 985
14.6.6 Multiple Presence Factor 985
14.6.7 Pedestrian Load and Sidewalk Load 985
14.6.8 Deflection Limit 986
14.6.9 Other Requirements 986
14.7 Distribution of Live Loads and Beam Distribution Factors 987
14.7.1 Load Distribution Factors 987
14.7.2 Remarks Related to a Particular Bridge Deck Type 994
14.7.3 Simplified Distribution Factor by Heuristic Approach 995
14.8 Design Aids for Live Load Moments and Shears for One Loading Lane 996
14.8.1 General Rule for Concentrated Loads in Simply Supported Spans 996
14.8.2 Equations for Live Load Moments and Shears in Simply Supported Spans 997
14.8.3 Design Chart for Simply Supported Spans 1000
14.8.4 Design Charts for Live Load Moments at Supports of Continuous Beams with Equal Spans 1000
14.9 Moments and Shears in Typical Girders 1004
14.10 Example: Composite Bridge with Cast-in-Place Reinforced Concrete Slab on Top of Prestressed I-Girders 1005
14.10.1 Live Load Moments and Shears at Critical Sections 1006
14.10.2 Detailed Design of Prestressed I Beams 1008
14.11 Example: Bridge Deck with Adjacent Precast Pretensioned Box Beams 1022
14.12 Example: Negative Live Load Moment in Two-Span Continuous Bridge Deck
1028
14.13 Slabs for Bridge Decks and Solid Slab Bridges
1031
14.13.1 Equivalent Strip Width for Slab Type Bridges and Distribution Factor for Slabs
1031
14.13.2 Minimum Depth and Clear Concrete Cover
1032
14.13.3 Cast-in-Place One-Way Prestressed Slabs
1032
14.13.4 Traditional Design of Reinforced Concrete Deck Slabs
1033
14.13.5 Empirical Design of Slabs
1034
14.13.6 Temperature and Shrinkage Reinforcement
1035
14.13.7 Moments for Slabs Supported on Four Sides
1036
14.14 Example: Design of a Cast-in-Place Posttensioned Slab Bridge
1036
14.15 Precast Bridge Beams Made Continuous by a Cast-in-Place RC Slab
1040
14.15.1 Example: Prestressed Bridge Beams Made Continuous by Cast-in-Place RC Slab
1042
14.16 Design Charts for Prestressed Bridge Beams
1046
14.17 Preliminary Design Tips for Dimensioning
1047
14.18 Other Design Considerations
1049
14.19 Bridge Engineering: Looking Ahead
1050
References
1053
Problems
1055

Chapter 15 Strut-and-Tie Modeling 1061
15.1 Introduction
15.1.1 Background and Motivation
15.1.2 B- and D-Regions
15.1.3 Trusses and Strut-and-Tie Models
15.1.4 ACI Code Definition
15.2 Elements of Strut-and-Tie Models
15.2.1 Assumptions
15.2.2 Mechanical Requirements and Geometry Rules
15.2.3 Requirements for Nodal Zones
15.2.4 External and Unbonded Prestressing Tendons
15.2.5 Terminology / Notation
15.3 Design Steps to Build a Strut-and-Tie Model (STM)
15.3.1 Initial Checks
15.3.2 Design Steps
15.4 Design Philosophy
15.5 Design of Ties
15.5.1 Prestressing Tendons
15.6 Design of Struts
15.7 Design of Nodal Zones
15.7.1 Assumptions
15.7.2 Dimensioning
15.7.3 Anchorages
15.7.4 Nominal Strength
15.8 STM by AASHTO LRFD
15.9 Anchorage Zones of Prestressed Members
15.10 Example: Anchorage Zone Design by STM
15.10.1 Two Spread-Out Anchorages
15.10.2 Two Anchorages Placed Close to Each Other
15.11 Dapped-End Beams
15.12 Example: Dapped-End Beam Design by STM
<table>
<thead>
<tr>
<th>15.13</th>
<th>Examples of Applications of Strut-and-Tie Models to Various Structures</th>
<th>1107</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.14</td>
<td>Concluding Remarks</td>
<td>1113</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>1113</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>1115</td>
</tr>
</tbody>
</table>

Appendix A	List of Symbols	1117
Appendix B	Unit Conversions	1130
Appendix C	Typical Post-Tensioning Systems	1133
Appendix D	Answers to Selected Problems	1153
Appendix E	Examples of Standard Precast / Prestressed Beams	1159

| INDEX | | 1167 |