This book was written to serve as a thorough teaching text, a comprehensive source of information, and a basic reference. It is intended for advanced students, professional engineers, and researchers. It emphasizes the fundamental concepts of analysis and design of prestressed concrete structures, providing the user with the essential knowledge and tools to deal with everyday design problems, while encouraging the necessary critical thinking to tackle more complex problems with confidence.

Prestressed concrete is one of the most reliable, durable, and widely used construction materials in building and bridge projects around the world. It has made significant contributions to the construction industry, the precast manufacturing industry, and the cement industry as a whole. It has led to an enormous array of structural applications, including buildings, bridges, nuclear power vessels, TV towers, and offshore drilling platforms.

Main Features:

This updated edition
- Integrates the provisions of the 2011 ACI Building Code in text and examples
- Offers an extensive treatment of bridge analysis and design according to the 2010 AASHTO LRFD Specifications
- Offers a rigorous treatment of fundamentals as applied to serviceability and ultimate strength limit states for bending, shear, composite action, compression and tension members, and introduces some simple optimum design approaches
- Includes a large number of logical design flow charts and design examples
- Covers the basics and provides examples of applications comparing both the 2011 ACI and 2010 AASHTO LRFD code approaches to bending, shear and torsion, prestress losses, and interface shear
- Presents a chapter on strut-and-tie modeling according to the ACI Building Code with examples of anchorage zone design
- Covers slenderness effects in prestressed concrete columns, and provides load-moment interaction diagrams for prestressed columns and poles
Offers a comprehensive treatment of the design of one- and two-way prestressed slabs
• Presents a unique treatment of prestressed tensile members by optimum design, including the design of wall for circular tanks
• Covers the time-step procedure to compute prestress losses and long-term deflections
• Offers a rigorous treatment of prestressed continuous beams
• Presents a comprehensive treatment of prestressed composite beams
• Contains more than four hundreds illustrations and photographs
• Covers sufficient material for a two-semester course on the subject
• Contains a large number of examples, an extensive updated bibliography, and an appendix with answers to study problems
• Uses consistent notation and consistent sign convention
• Uses dual units (US and SI) throughout for key equations and reference data

Chapter 1 Principle and Methods of Prestressing
Chapter 2 Prestressing Materials: Steel and Concrete
Chapter 3 The Philosophy of Design
Chapter 4 Flexure: Working Stress Analysis and Design
Chapter 5 Flexure: Ultimate Strength Analysis and Design
Chapter 6 Design for Shear and Torsion
Chapter 7 Deflection Computation and Control
Chapter 8 Computation of Prestress Losses
Chapter 9 Analysis and Design of Composite Beams
Chapter 10 Continuous Beams and Indeterminate Structures
Chapter 11 Prestressed Concrete Slabs
Chapter 12 Analysis and Design of Tensile Members
Chapter 13 Analysis and Design of Compression Members
Chapter 14 Prestressed Concrete Bridges
Chapter 15 Strut-and-Tie Modeling
Appendix A List of Symbols
Appendix B Unit Conversions
Appendix C Typical Post-Tensioning Systems
Appendix D Answers to Selected Problems
Appendix E Typical Precast / Prestressed Beams
Index

CONTENTS
Chapter 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1 Pretensioning</td>
<td>12</td>
</tr>
<tr>
<td>1.4.2 Posttensioning</td>
<td>17</td>
</tr>
<tr>
<td>1.4.3 Self-Stressing</td>
<td>22</td>
</tr>
<tr>
<td>1.5 Prestressing Systems</td>
<td>24</td>
</tr>
<tr>
<td>1.6 Particular Prestressing Techniques</td>
<td>25</td>
</tr>
<tr>
<td>1.6.1 External Prestressing</td>
<td>25</td>
</tr>
<tr>
<td>1.6.2 Circular Prestressing</td>
<td>27</td>
</tr>
<tr>
<td>1.6.3 Stage Prestressing</td>
<td>28</td>
</tr>
<tr>
<td>1.6.4 Partial Prestressing</td>
<td>28</td>
</tr>
<tr>
<td>1.7 Prestressed Versus Reinforced Concrete</td>
<td>29</td>
</tr>
<tr>
<td>1.8 Example</td>
<td>32</td>
</tr>
<tr>
<td>1.9 Looking Ahead</td>
<td>37</td>
</tr>
<tr>
<td>1.10 Suggested Additional Reading</td>
<td>38</td>
</tr>
<tr>
<td>References</td>
<td>38</td>
</tr>
<tr>
<td>Problems</td>
<td>42</td>
</tr>
</tbody>
</table>

Chapter 2

Prestressing Materials: Steel and Concrete

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Reinforcing Steels</td>
<td>45</td>
</tr>
<tr>
<td>2.2 Prestressing Steels</td>
<td>49</td>
</tr>
<tr>
<td>2.2.1 Types of Prestressing Tendons</td>
<td>50</td>
</tr>
<tr>
<td>2.2.2 Production Process</td>
<td>53</td>
</tr>
<tr>
<td>2.2.3 Mechanical and Stress-Strain Properties</td>
<td>55</td>
</tr>
<tr>
<td>2.2.4 Relaxation</td>
<td>58</td>
</tr>
<tr>
<td>2.2.5 Effects of Temperature</td>
<td>62</td>
</tr>
<tr>
<td>2.2.6 Fatigue</td>
<td>64</td>
</tr>
<tr>
<td>2.2.7 Corrosion</td>
<td>68</td>
</tr>
<tr>
<td>2.3 Concrete</td>
<td>70</td>
</tr>
<tr>
<td>2.3.1 Composition</td>
<td>70</td>
</tr>
<tr>
<td>2.3.2 Stress-Strain Curve</td>
<td>71</td>
</tr>
<tr>
<td>2.3.3 Mechanical Properties</td>
<td>74</td>
</tr>
<tr>
<td>2.3.4 Shrinkage</td>
<td>78</td>
</tr>
<tr>
<td>2.3.5 Creep</td>
<td>81</td>
</tr>
<tr>
<td>2.3.6 Fatigue</td>
<td>85</td>
</tr>
<tr>
<td>2.3.7 Effects of Temperature</td>
<td>85</td>
</tr>
<tr>
<td>2.3.8 Steam Curing</td>
<td>86</td>
</tr>
<tr>
<td>2.4 Constitutive Modeling</td>
<td>87</td>
</tr>
<tr>
<td>2.4.1 Stress-Strain Curve of Concrete in Compression</td>
<td>87</td>
</tr>
<tr>
<td>2.4.2 Stress-Strain Curve of Reinforcing Steel in Tension</td>
<td>90</td>
</tr>
<tr>
<td>2.4.3 Stress-Strain Curve of Prestressing Steels in Tension</td>
<td>93</td>
</tr>
<tr>
<td>2.5 Concluding Remarks</td>
<td>96</td>
</tr>
<tr>
<td>References</td>
<td>96</td>
</tr>
<tr>
<td>Problems</td>
<td>99</td>
</tr>
</tbody>
</table>

Chapter 3

The Philosophy of Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 What is Design?</td>
<td>103</td>
</tr>
<tr>
<td>3.2 Analysis or Investigation Versus Design</td>
<td>104</td>
</tr>
<tr>
<td>3.3 Design Objectives</td>
<td>104</td>
</tr>
<tr>
<td>3.4 Limit State Design Philosophy</td>
<td>105</td>
</tr>
<tr>
<td>3.5 Common Design Approaches</td>
<td>107</td>
</tr>
<tr>
<td>3.5.1 WSD (or ASD)</td>
<td>109</td>
</tr>
<tr>
<td>3.5.2 USD, SD, or LRFD</td>
<td>110</td>
</tr>
<tr>
<td>3.5.3 Plastic Design, Limit Design, and Performance Based Plastic Design</td>
<td>113</td>
</tr>
<tr>
<td>3.5.4 Nonlinear Design, Probabilistic Design</td>
<td>113</td>
</tr>
</tbody>
</table>
3.6 Design Codes 113
3.7 Loads 114
3.8 Allowable Stresses 117
 3.8.1 Concrete 117
 3.8.2 Prestressing Steel 121
 3.8.3 Reinforcing Steel 122
3.9 Load and Strength Reduction (or Resistance) Factors 123
 3.9.1 Load Factors 123
 3.9.2 Strength Reduction or Resistance Factors 125
3.10 ACI Code Viewpoint Related to Prestressed and Partially Prestressed Concrete 126
 3.10.1 Class Definition and Related Serviceability Design Requirements 126
 3.10.2 Tension Controlled and Compression Controlled Sections 128
3.11 Some Design Comparisons: Reinforced Versus Prestressed Concrete 130
 3.11.1 Practical Design Approach 130
 3.11.2 C-Force and C-Line 131
 3.11.3 Characteristic Response of RC, PC, and PPC in Bending in the Elastic Range of Behavior 132
 3.11.4 Curvature Computation 134
 3.11.5 Load Balancing Feature of Prestressing 136
3.12 Detailing of Reinforcement 137
3.13 Prestress Losses in Preliminary Design 140
3.14 Concluding Remarks 142
References 142

Chapter 4 Flexure: Working Stress Analysis and Design 145
4.1 Analysis Versus Design 145
4.2 Concepts of Prestressing 150
4.3 Notations for Flexure 152
 4.3.1 Example: Computation of Sectional Properties 155
4.4 Sign Convention 155
 4.4.1 Examples 158
4.5 Loading Stages 160
4.6 Allowable Stresses 161
4.7 Mathematical Basis for Flexural Analysis 163
4.8 Geometric Interpretation of the Stress Inequality Conditions 167
4.9 Example: Analysis and Design of a Prestressed Beam 170
 4.9.1 Simply Supported T Beam 170
 4.9.2 Simply Supported T Beam with Single Cantilever on One Side 174
4.10 Use of Stress Inequality Conditions for Design of Section Properties 178
 4.11 Examples of Use of Minimum Section Properties 184
 4.11.1 Minimum Weight Slab 184
 4.11.2 Minimum Weight Beam 186
 4.11.3 Selection of Optimum Beam from a Given Set of Beams 187
4.12 Limiting the Eccentricity along the Span 189
 4.12.1 Limit Kern Versus Central Kern 189
 4.12.2 Steel Envelopes and Limit Zone 193
 4.12.2.1 General Procedure 196
Chapter 5 Flexure: Ultimate Strength Analysis and Design 229

5.1 Load-Deflection Response 229
5.1.1 RC Versus PC at Ultimate 232
5.2 Terminology 233
5.3 Flexural Types of Failures 234
5.4 Special Notation 235
5.5 General Criteria for Ultimate Strength Design of Bending Members 238
5.5.1 Design Criteria 238
5.5.2 Minimum Reinforcement or Minimum Moment Resistance: Code Recommendations 239
5.5.3 ACI Code Provisions for Tension-Controlled, Transition, and Compression-Controlled Sections at Increasing Levels of Reinforcement 241
5.5.4 Net Tensile Strain and c/d_e Ratio 246
5.5.5 Amendments Adopted in this Text 248
5.5.6 Recommendation on Maximum Reinforcement 249
5.6 Background for Analysis of Sections at Ultimate 250
5.6.1 Objective – Assumptions 250
5.6.2 Satisfying Equilibrium 253
5.7 Nominal Bending Resistance: Mathematical Formulation for Rectangular Section or Rectangular Section Behavior – Tension-Controlled 253
5.7.1 Force Equilibrium 253
5.7.2 Moment Equilibrium 255
5.7.3 Solution Procedure 255
5.7.4 Simplified Approximate Analysis 256
5.8 Stress in Prestressing Steel at Nominal Bending Resistance –
5.8.1 Members with Bonded Prestressing Tendons
5.8.2 Members with Unbonded Prestressing Tendons

5.9 Example: Nominal Bending Resistance of a Rectangular Section
5.9.1 Partially Prestressed Section – Simplified Approximation
5.9.2 Partially Prestressed Section – Using ACI Code Equation for f_{ps}
5.9.3 Fully Prestressed Section
5.9.4 Unbonded Tendons

5.10 Nominal Bending Resistance: Mathematical Formulation for T-Section Behavior of Flanged Section
5.10.1 Condition for T-Section Behavior
5.10.2 Fully Prestressed Section
5.10.3 Partially Prestressed Section
5.10.4 Remark

5.11 Example: Nominal Bending Resistance of T-Section
5.11.1 Partially Prestressed Section
5.11.2 Fully Prestressed Section
5.11.3 Unbonded Tendons
5.11.4 Odd Case

5.12 Stress in Prestressing Steel at Nominal Bending Resistance – AASHTO LRFD Code
5.12.1 Members with Bonded Prestressing Tendons
5.12.2 Members with Unbonded Prestressing Tendons

5.13 Nominal Bending Resistance: AASHTO LRFD Code
5.13.1 Equilibrium Equations for Rectangular and Flanged Sections
5.13.2 Solution for Members with Bonded Tendons
5.13.3 Solution for Members with Unbonded Tendons
5.13.4 Solution for Members with Both Bonded and Unbonded Tendons
5.13.5 Example: PPC (Partially Prestressed Concrete) Rectangular Section by AASHTO
5.13.6 Example: PPC (Partially Prestressed Concrete) T-Section with Bonded Tendons (AASHTO)

5.14 Transition between Tension-Controlled and Compression-Controlled Section in Bending
5.14.1 ϕ Factor for Bending According to AASHTO
5.14.2 Strategy for Design

5.15 Concept of Reinforcing Index
5.15.1 Definitions
5.15.2 Meaning of ω,
5.15.3 Useful Relationships
5.15.4 Relationship between Reinforcement Ratio, Reinforcing Index, and c/d_e

5.16 Justification for the Definition of ω and d_e and their Relation to the Limitations on Levels of Reinforcement and Moment Redistribution
5.16.1 Reinforced Concrete
5.16.2 Prestressed Concrete
5.16.3 Partially Prestressed Concrete

5.17 Derivation of Minimum Reinforcement Ratio, Minimum
Reinforcing Index, or Minimum \(c/d_e \)

5.17.1 Approximation: Minimum Reinforcement Ratio for Prestressed Concrete 293

5.17.2 Minimum Reinforcing Index for RC, PC, and PPC 294

5.17.3 Minimum \(c/d_e \) Ratio for RC, PC, and PPC Rectangular Sections 296

5.18 Satisfying Ultimate Strength Design Requirements 298

5.18.1 Basis for Ultimate Strength Design (USD) 298

5.18.2 Possible Remedies to Satisfy Inadequate Nominal Bending Resistance 299

5.19 Example: Analysis or Investigation Checking for All Ultimate Strength Design Criteria 300

5.20 Reinforcement Design for Ultimate Strength 302

5.20.1 Example: Reinforcement Design for Nominal Resistance – Rectangular Section 304

5.20.2 Example: Reinforcement Design for Nominal Resistance – T Section 308

5.21 Composite Beams 310

5.22 Continuous Beams and Moment Redistribution 310

5.23 Author’s Recommendations for the Design of RC, PC, and PPC Beams at Ultimate

5.23.1 Using \(\varepsilon_t \) and \(d_e \) instead of \(\varepsilon_t \) and \(d_t \) 311

5.23.1.1 Example of Error in Using the Net Tensile Strain in Extreme Layer of Reinforcement 312

5.23.2 T-Section Behavior 313

5.23.3 Stress \(f_{ps} \) in Bonded Tendons at Ultimate 314

5.23.4 Stress \(f_{ps} \) in Unbonded Prestressing Tendons at Ultimate 314

5.24 Additional Design Examples Based on USD 318

5.24.1 Example 1: Analysis with Unbonded Tendons Illustrating Eq. (5.103) 319

5.24.2 Example 2: Given \(A_{ps} \), Design for \(A_s \) Based on USD – Unbonded Tendons 321

5.24.3 Example 3: Given \(A_s \), Design for \(A_{ps} \) Based on USD – Unbonded Tendons 323

5.24.4 Example 4: Given \(A_s \), Design for \(A_{ps} \) Based on USD – Bonded Tendons 323

5.25 Concluding Remarks 324

Chapter 6 Design for Shear and Torsion 331

6.1 Introduction 331

6.2 Shear Design 332

6.3 Prestressed Versus Reinforced Concrete in Shear 332

6.4 Diagonal Tension in Uncracked Sections 334

6.5 Shear Stresses in Uncracked Sections 338

6.6 Shear Cracking Behavior 340

6.7 Shear Reinforcement after Cracking 343

6.8 ACI Code Design Criteria for Shear 347

6.8.1 Basic Approach 347

6.8.2 Shear Strength Provided by Concrete 348

6.8.2.1 Conservative Design Method to Estimate \(V_c \) or \(V_c \) 349

References 324

Problems 326
6.8.2.2 Elaborate Design Method to Estimate \(v_c \) or \(V_c \) 350
6.8.3 Required Area of Shear Reinforcement 353
6.8.4 Limitations and Special Cases 354
6.8.5 Critical Sections for Shear 356
6.9 Design Expedients 357
6.10 Example: Design of Shear Reinforcement (ACI Code) 360
6.10.1 Conservative Method to Determine \(v_c \) 361
6.10.2 Elaborate Method to Determine \(v_c \) 363
6.10.3 Design for Increased Live Load: Partially Prestressed Beam 367
6.11 Derivation of Concrete Nominal Shear Strength Equations (ACI Code) 367
6.12 AASHTO General Procedure for Shear Design 371
6.12.1 General Sectional Procedure for Shear Design 373
6.12.2 Special Considerations 380
6.12.3 Example: Shear Design by AASHTO LRFD Code (Using Modified Compression Field Theory) 384
6.12.4 Simplified Shear Design Procedure by AASHTO for Prestressed and Non-Prestressed Sections 388
6.12.5 Example: Using AASHTO Simplified Shear Design Procedure 391
6.13 Torsion and Torsion Design 392
6.14 Behavior under Pure Torsion 393
6.15 Background to Stress Analysis and Design for Torsion 396
6.15.1 Torsional Stresses 396
6.15.2 Torsional Cracking Strength 398
6.15.3 Torsional Resistance after Cracking 399
6.15.4 Combined Loading 402
6.15.5 Design Theories for Torsion and Code Related Approaches 404
6.16 Design for Torsion by ACI Code 406
6.16.1 Definition of Section Parameters 406
6.16.2 Basic Assumptions and Design Strategy 407
6.16.3 Threshold Limit for Consideration of Torsion in Design – \((T_u)_{min} \) 408
6.16.4 Critical Section for Torsion 409
6.16.5 Maximum Allowable Torsional Moment Strength – Upper Limit 409
6.16.6 Transverse Reinforcement Design 411
6.16.7 Longitudinal Torsion Reinforcement 412
6.16.8 Combining Shear and Torsion Reinforcement 413
6.16.9 Minimum Torsion Reinforcement 413
6.16.10 Spacing and Detailing 414
6.16.11 Type of Torsion Reinforcement 414
6.16.12 Design Steps for Combined Torsion and Shear 416
6.17 Example: Torsion Design of a Prestressed Beam 416
6.18 Shear and Torsion in Partially Prestressed Members 419
6.19 Importance of Transverse Reinforcement 420
References 421
Problems 423

Chapter 7 Deflection Computation and Control 429
7.1 Serviceability 429
Chapter 7

7.2 Deflection: Types and Characteristics
 7.2.1 Terminology / Notation
 7.2.2 Key Variables Affecting Deflections in a Given Beam
7.3 Theoretical Deflection Derivations
 7.3.1 Moment-Area Theorems
 7.3.2 Example
7.4 Short-Term Deflections in Prestressed Members
 7.4.1 Uncracked Members
 7.4.2 Cracked Members
7.5 Background to Understanding Long-Term Deflection
7.6 Additional Long-Term Deflection: Simplified Prediction Methods
 7.6.1 Additional Long-Term Deflection Using ACI Code Multiplier
 7.6.2 Additional Long-Term Deflection Using Branson’s Multipliers
 7.6.3 Additional Long-Term Deflection Using Martin’s Multiplier
 7.6.4 Additional Long-Term Deflection: Heuristic or “Rule of Thumb” Method
 7.6.5 Discussion
7.7 Deflection Limitations
7.8 Strategy for Checking Deflection Criteria
7.9 Example: Deflection of Uncracked or Cracked Prestressed Beam
 7.9.1 Fully Prestressed Beam – Uncracked under Full Service Load
 7.9.2 Partially Prestressed Beam
7.10 Integrating the Modulus of Concrete into Time-Dependent Deflection Calculations
 7.10.1 Age-Adjusted Effective Modulus
 7.10.2 Equivalent Modulus
 7.10.3 Equivalent Cyclic-Dependent Modulus
7.11 Long-Term Deflection by Incremental Time Steps
 7.11.1 Theoretical Approach
 7.11.2 Simplified C-Line Approach
7.12 Example: Time-Dependent Deflection Using the C-Line Approach and Comparisons
 7.12.1 Standard Precast Prestressed Double-T Beam
 7.12.2 Comparison of Long-Term Deflections Predicted from Different Methods
7.13 Time-Dependent Deflection Using C-Line Approach for Example 7.9.1
7.14 Deflection Control
7.15 Effective Moment of Inertia - Revisited
7.16 Concluding Remarks
 References
 Problems

Chapter 8

Chapter 8 Computation of Prestress Losses

8.1 Sources of Loss of Prestress
8.2 Total Losses in Pretensioned Members
8.3 Total Losses in Posttensioned Members
8.4 Methods for Estimating Prestress Losses
8.5 Lump Sum Estimate of Total Losses
 8.5.1 Background
 8.5.2 Lump Sum Estimate of Time-Dependent Prestress Losses: AASHTO LRFD
 8.5.2.1 Non Composite Members
 8.5.2.2 Composite Members
 8.5.2.3 Refined Estimate of Time Dependent Losses
8.6 Separate Lump Sum Estimate of Each Time-Dependent Loss
 – AASHTO LRFD
 8.6.1 Total Loss Due to Shrinkage
 8.6.2 Total Loss Due to Creep
 8.6.3 Total Loss Due to Relaxation
 8.6.4 Losses for Deflection Calculations
 8.6.5 Example: Losses Due to Relaxation
8.7 Loss Due to Elastic Shortening
 8.7.1 Pretensioned Construction: Approximate Method and AASHTO LRFD
 8.7.2 Pretensioned Construction: Accurate Method
 8.7.3 Posttensioned Construction: AASHTO LRFD
 8.7.4 Posttensioned Construction: Accurate Method
8.8 Example: Elastic Shortening Loss in Pretensioned Beam
8.9 Example: Computation of Prestress Losses for a Pretensioned Beam by Lump Sum Estimates of Total and Separate Losses
 8.9.1 Lump Sum Estimate of Total Losses by AASHTO LRFD
 8.9.2 Lump Sum Estimates of Separate Losses by AASHTO LRFD
8.10 Example: Typical Stress History in Strands
8.11 Time-Dependent Loss Due to Steel Relaxation
8.12 Time-Dependent Loss Due to Shrinkage
 8.12.1 Shrinkage Strain Recommended in AASHTO LRFD
 8.12.2 Example: Shrinkage Loss Assuming No Other Loss Occurs
8.13 Time-Dependent Loss Due to Creep
 8.13.1 Creep Coefficient Recommended in AASHTO LRFD
 8.13.2 Example: Creep Loss Assuming No Other Loss Occurs
8.14 Prestress Losses by Time-Step Method
8.15 Example: Computation of Prestress Losses for a Pretensioned Beam by Time-Step Method
8.16 Loss Due to Friction
 8.16.1 Analytical Formulation
 8.16.2 Graphical Representation
 8.16.3 Example: Computation of Losses Due to Friction
8.17 Loss Due to Anchorage Set
 8.17.1 Concept of Area Lost or Equivalent Energy Lost
 8.17.2 Example: Loss Due to Anchorage Set
8.18 Loss Due to Anchorage Set in Short Beams
 8.18.1 Example: Anchorage Set Loss in a Short Beam
8.19 Concluding Remarks
References
Problems
Chapter 9 Analysis and Design of Composite Beams 565
 9.1 Types of Prestressed Concrete Composite Beams 565
 9.2 Advantages of Composite Construction 566
 9.3 Particular Design Aspects of Prestressed Composite Beams 568
 9.4 Loading Stages, Shored Versus Unshored Beams 569
 9.5 Effective and Transformed Flange Width and Section Properties 570
 9.5.1 Effective Flange Width 570
 9.5.2 Transformed Flange Width 572
 9.5.3 Cross Section Properties of Composite Section 574
 9.6 Interface Shear or Horizontal Shear 575
 9.6.1 Evaluation of Horizontal Shear 575
 9.6.2 ACI Code Provisions for Horizontal Shear at Contact Surface
 9.6.2.1 Shear Transfer Resistance 578
 9.6.2.2 Shear Friction Reinforcement: Sectional Design 580
 9.6.3 Shear Friction Reinforcement: Segment Design 582
 9.7 Flexure: Working Stress Analysis and Design 585
 9.7.1 Extreme Loadings 585
 9.7.2 Stress Inequality Conditions 586
 9.7.3 Feasible Domain, Limit Kern, Steel Envelopes 590
 9.7.4 Cracking Moment 591
 9.7.5 Minimum Section Moduli of Composite Sections 591
 9.7.6 Example: Selection of Optimum Beam from a Given Set of Beams 594
 9.8 Flexure: Ultimate Strength Analysis and Design 597
 9.9 Designing for Shear and Torsion 599
 9.10 Deflections 600
 9.10.1 Sequence of Computations 601
 9.11 Example: Prestressed Composite Floor Beam 602
 9.12 AASHTO LRFD Provisions on Interface Shear Reinforcement at Contact Surface of Composite Beams 616
 9.12.1 General Design Approach 617
 9.12.2 Factored Interface Shear Force per Unit Length of Interface, \(V_{uh} \) 618
 9.12.3 Nominal Interface Shear Resistance per Unit Length, \(V_{nh} \) 619
 9.12.4 Minimum Interface Shear Reinforcement 621
 9.12.5 Practical Recommendation 622
 9.12.6 Example 623
 References 625
 Problems 626

Chapter 10 Continuous Beams and Indeterminate Structures 629
 10.1 Advantages and Forms 629
 10.2 Necessary Analytical Background 632
 10.3 Sign Convention and Special Notation 633
 10.4 Secondary Moments and Zero-Load-C (ZLC) Line 634
 10.5 Example: Secondary Moments and Concordancy Property 637
 10.6 Linear Transformation 640
 10.7 Concordant Tendons 641
 10.8 External Loads Equivalent to Prestressing 643
 10.8.1 Concept of Equivalent Load 644
10.8.2 Application of Equivalent Load to a Continuous Tendon

10.8.3 Example: Equivalent Load

10.8.4 Example: Equivalent Load for Circular and Parabolic Tendon Profile

10.9 Prestressing Moment and Elastic Stresses

10.9.1 Moment Due to Prestressing, M_F

10.9.2 Example: Prestressed Moments by the Equivalent Load Method

10.9.3 Elastic Stresses in a Continuous Beam

10.10 Design Aids

10.11 Working Stress Analysis and Design

10.11.1 Assumptions

10.11.2 Analysis or Investigation

10.11.3 Design

10.12 Limit Kern and Limit Zone

10.13 Load-Balancing Method

10.13.1 General Approach

10.13.2 Load Balancing of Edge-Supported Slabs

10.13.3 Example: Load Balancing of an Edge-Supported Slab

10.13.4 Load Balancing of Frames

10.13.5 Limitations of Load Balancing

10.14 Ultimate Strength Analysis

10.14.1 Treatment of Secondary Moments

10.14.2 Limit Analysis

10.14.3 Redistribution of Moments

10.14.4 Secondary Moment and Moment Redistribution

10.14.5 Prediction of Plastic Rotation in PPC Beams

10.15 Example: Design of a Prestressed Continuous Beam

10.16 Useful Design Aids for Continuous Beams

References

Problems

Chapter 11

Prestressed Concrete Slabs

11.1 Slab Systems

11.1.1 General Design Approach

11.2 Unbonded Tendons in One- and Two-Way Slab Systems

11.2.1 Stress at Ultimate in Unbonded Tendons

11.3 Design of One-Way Slabs

11.3.1 Design Procedure

11.3.2 Minimum Bonded Reinforcement

11.3.3 Temperature and Shrinkage Reinforcement

11.3.4 Additional Design Notes

11.3.5 Deflection

11.4 Example: Design of a Five-Span Continuous One-Way Slab Prestressed with Unbonded Tendons

11.5 Characteristics of Two-Way Flat Slabs

11.5.1 Load Path

11.5.2 Reinforcement Layout

11.5.3 Theoretical Distribution of Moments

11.5.4 Special Notations

11.6 Analysis and Design Methods

11.6.1 Analysis
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6</td>
<td>Circular Structures: Tanks and Pressure Vessels</td>
<td>824</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Construction Methods</td>
<td>826</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Analysis of Stresses</td>
<td>829</td>
</tr>
<tr>
<td>12.6.2.1</td>
<td>Ring Stresses</td>
<td>832</td>
</tr>
<tr>
<td>12.6.3</td>
<td>Wall Design</td>
<td>834</td>
</tr>
<tr>
<td>12.6.3.1</td>
<td>Design Criteria</td>
<td>834</td>
</tr>
<tr>
<td>12.6.3.2</td>
<td>Minimum Wall Thickness</td>
<td>835</td>
</tr>
<tr>
<td>12.6.3.3</td>
<td>Minimum Residual Prestress</td>
<td>836</td>
</tr>
<tr>
<td>12.6.3.4</td>
<td>Rapid Dimensioning of Wall Thickness and Prestressing</td>
<td>836</td>
</tr>
<tr>
<td>12.6.3.5</td>
<td>Radial Deflection</td>
<td>838</td>
</tr>
<tr>
<td>12.6.3.6</td>
<td>Additional Design Information</td>
<td>839</td>
</tr>
<tr>
<td>12.6.4</td>
<td>Example: Preliminary Design of Cylindrical Tank Wall</td>
<td>840</td>
</tr>
<tr>
<td>12.7</td>
<td>Example: Preliminary Dimensioning of a Tension Ring Beam</td>
<td>846</td>
</tr>
<tr>
<td>12.8</td>
<td>Practical Design Considerations</td>
<td>848</td>
</tr>
<tr>
<td>12.9</td>
<td>Combined Tension and Bending</td>
<td>848</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>849</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>851</td>
</tr>
</tbody>
</table>

Chapter 13 Analysis and Design of Compression Members 853

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Types of Compression Members and Their Advantages</td>
<td>853</td>
</tr>
<tr>
<td>13.2</td>
<td>Behavior of Columns</td>
<td>857</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Load-Deformation Response</td>
<td>857</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Classification</td>
<td>858</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Load-Moment Interaction Diagram</td>
<td>858</td>
</tr>
<tr>
<td>13.2.4</td>
<td>ACI Code Design Interaction Diagram</td>
<td>861</td>
</tr>
<tr>
<td>13.3</td>
<td>Analysis of Short Columns</td>
<td>863</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Assumptions</td>
<td>863</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Basic Equations for Fully Prestressed Square and Rectangular Sections</td>
<td>865</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Partially Prestressed Square or Rectangular Sections</td>
<td>867</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Circular Hollow-Core and I-Shaped Sections</td>
<td>869</td>
</tr>
<tr>
<td>13.4</td>
<td>Example: Column Load-Moment Interaction Diagram</td>
<td>872</td>
</tr>
<tr>
<td>13.5</td>
<td>ACI Code Provisions and Other Design Considerations</td>
<td>881</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Minimum Longitudinal Reinforcement</td>
<td>881</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Lateral or Transverse Reinforcement</td>
<td>881</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Minimum Size of Columns</td>
<td>884</td>
</tr>
<tr>
<td>13.5.4</td>
<td>Minimum Eccentricity</td>
<td>884</td>
</tr>
<tr>
<td>13.5.5</td>
<td>Transfer Zone</td>
<td>884</td>
</tr>
<tr>
<td>13.6</td>
<td>Slender Columns: Theoretical Background</td>
<td>885</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Critical Buckling Load</td>
<td>885</td>
</tr>
<tr>
<td>13.6.2</td>
<td>Effective Slenderness Ratio</td>
<td>886</td>
</tr>
<tr>
<td>13.6.3</td>
<td>Definition of Braced, Unbraced, Sway and Non-Sway Columns or Frames</td>
<td>887</td>
</tr>
<tr>
<td>13.6.4</td>
<td>Single and Double Curvature</td>
<td>888</td>
</tr>
<tr>
<td>13.6.5</td>
<td>Terminology and Definitions</td>
<td>888</td>
</tr>
<tr>
<td>13.6.6</td>
<td>Flexural Rigidity Under Cracked Conditions for First-Order Frame Analysis</td>
<td>890</td>
</tr>
<tr>
<td>13.7</td>
<td>Slenderness Effects: ACI Code Philosophy</td>
<td>891</td>
</tr>
<tr>
<td>13.8</td>
<td>ACI Code Design Provisions for Slender Columns by the Moment Magnifier Method</td>
<td>894</td>
</tr>
<tr>
<td>13.8.1</td>
<td>Sway and Non-Sway Conditions</td>
<td>894</td>
</tr>
</tbody>
</table>
13.8.2 Effective Length Factor k
13.8.3 Effective Slenderness Ratio and Slenderness Condition
13.8.4 ACI Moment Magnifier Procedure for Non-Sway Frames
13.8.5 ACI Moment Magnifier Procedure for Sway Frames with $22 < kl_o/r < 100$
13.8.6 Additional Design Checks
13.8.7 Design According to the PCI Committee on Columns

13.9 Example: Slender Column Using the PCI Approach
13.9.1 Non-Sway or Braced Column
13.9.2 Sway or Unbraced Column

13.10 Design Expedients and Design Aids
13.10.1 Preliminary Dimensioning
13.10.2 Design Charts: Load-Moment Interaction Diagrams

13.11 Biaxial Bending
13.12 New Design Methodology for Slender Prestressed Columns
13.12.1 Example: Computation of EI for a Slender PC Column Using Shuraim and Naaman’s Procedure

13.13 Concluding Remarks

Chapter 14 Prestressed Concrete Bridges
14.1 Scope
14.1.1 Special Design Characteristics of Bridge Members
14.2 Types of Bridges
14.2.1 Short-Span Bridges
14.2.2 Medium- and Long-Span Bridges Using Precast Beams
14.2.3 Long- and Very Long-Span Bridges
14.3 Rational Evolution of Bridge Form with Span Length
14.3.1 Evolution of Deck Section
14.3.2 Evolution of Support Structure and Form
14.4 Special Construction Techniques for Bridges
14.4.1 Segmental Construction and Cable Stayed Bridge Construction
14.4.2 Truss Bridges
14.4.3 Stress Ribbon or Inverted Suspension Bridges
14.4.4 Use of New Materials
14.5 Design Specifications and General Design Philosophy
14.5.1 Limit States
14.5.2 Load Combinations, Load Factors and Resistance Factors
14.5.3 Allowable Stresses for Service Limit States
14.6 Bridge Live Loads
14.6.1 Traffic Lane and Design (or Loading) Lane
14.6.2 Basic Types of Live Loads
14.6.3 Live Load Combinations for Design
14.6.4 Conditions of Application of Live Loads
14.6.5 Impact Factor
14.6.6 Multiple Presence Factor
14.6.7 Pedestrian Load and Sidewalk Load
Chapter 14 Distribution of Live Loads and Beam Distribution Factors

14.7 Distribution of Live Loads and Beam Distribution Factors
14.7.1 Load Distribution Factors
14.7.2 Remarks Related to a Particular Bridge Deck Type
14.7.3 Simplified Distribution Factor by Heuristic Approach

14.8 Design Aids for Live Load Moments and Shears for One Loading Lane
14.8.1 General Rule for Concentrated Loads in Simply Supported Spans
14.8.2 Equations for Live Load Moments and Shears in Simply Supported Spans
14.8.3 Design Chart for Simply Supported Spans
14.8.4 Design Charts for Live Load Moments at Supports of Continuous Beams with Equal Spans

14.9 Moments and Shears in Typical Girders

14.10 Example: Composite Bridge with Cast-in-Place Reinforced Concrete Slab on Top of Prestressed I-Girders
14.10.1 Live Load Moments and Shears at Critical Sections
14.10.2 Detailed Design of Prestressed I Beams

14.11 Example: Bridge Deck with Adjacent Precast Pretensioned Box Beams

14.12 Example: Negative Live Load Moment in Two-Span Continuous Bridge Deck

14.13 Slabs for Bridge Decks and Solid Slab Bridges
14.13.1 Equivalent Strip Width for Slab Type Bridges and Distribution Factor for Slabs
14.13.2 Minimum Depth and Clear Concrete Cover
14.13.3 Cast-in-Place One-Way Prestressed Slabs
14.13.4 Traditional Design of Reinforced Concrete Deck Slabs
14.13.5 Empirical Design of Slabs
14.13.6 Temperature and Shrinkage Reinforcement
14.13.7 Moments for Slabs Supported on Four Sides

14.14 Example: Design of a Cast-in-Place Posttensioned Slab Bridge

14.15 Precast Bridge Beams Made Continuous by a Cast-in-Place RC Slab
14.15.1 Example: Prestressed Bridge Beams Made Continuous by Cast-in-Place RC Slab

14.16 Design Charts for Prestressed Bridge Beams

14.17 Preliminary Design Tips for Dimensioning

14.18 Other Design Considerations

14.19 Bridge Engineering: Looking Ahead

References

Problems

Chapter 15 Strut-and-Tie Modeling

15.1 Introduction

15.1.1 Background and Motivation
15.1.2 B- and D-Regions
15.1.3 Trusses and Strut-and-Tie Models
15.1.4 ACI Code Definition
15.2 Elements of Strut-and-Tie Models 1067
 15.2.1 Assumptions 1068
 15.2.2 Mechanical Requirements and Geometry Rules 1069
 15.2.3 Requirements for Nodal Zones 1069
 15.2.4 External and Unbonded Prestressing Tendons 1070
 15.2.5 Terminology / Notation 1071
15.3 Design Steps to Build a Strut-and-Tie Model (STM) 1071
 15.3.1 Initial Checks 1071
 15.3.2 Design Steps 1072
15.4 Design Philosophy 1076
15.5 Design of Ties 1076
 15.5.1 Prestressing Tendons 1077
15.6 Design of Struts 1078
15.7 Design of Nodal Zones 1081
 15.7.1 Assumptions 1081
 15.7.2 Dimensioning 1081
 15.7.3 Anchorages 1082
 15.7.4 Nominal Strength 1083
15.8 STM by AASHTO LRFD 1084
15.9 Anchorages Zones of Prestressed Members 1085
15.10 Example: Anchorage Zone Design by STM 1087
 15.10.1 Two Spread-Out Anchorages 1088
 15.10.2 Two Anchorages Placed Close to Each Other 1097
15.11 Dapped-End Beams 1098
15.12 Example: Dapped-End Beam Design by STM 1100
15.13 Examples of Applications of Strut-and-Tie Models to Various Structures 1107
15.14 Concluding Remarks 1113
References 1113
Problems 1115

Appendix A List of Symbols 1117
Appendix B Unit Conversions 1130
Appendix C Typical Post-Tensioning Systems 1133
Appendix D Answers to Selected Problems 1153
Appendix E Examples of Standard Precast / Prestressed Beams 1159
INDEX 1167